Last Time. We defined the Grassmann (exterior) algebra $\Lambda^{*} V$ on a finite dimensional vector space V as an (associative) algebra (with unit) with an injective linear map $i: V \hookrightarrow \Lambda^{*} V$ and the universal property that for any associative algebra A and any linear map $j: V \rightarrow A$ such that $j(v) \cdot j(w)=0$, there exists a unique map of algebras $\bar{j}: \Lambda^{*} V \rightarrow A$ such that the following diagram commutes:

Remark 21.1. If A is an algebra, $V \subseteq A$ a subspace, and for all $v \in V v^{2}=0$, then for all $v, w \in V$:

$$
0=(v+w)^{2}=v \cdot v+v \cdot w+w \cdot v+w \cdot w=v \cdot w+w \cdot v
$$

and therefore $w \cdot v=-v \cdot w$ for all $v, w \in V$.
Proposition 21.2 (6.20 in online notes). If the Grassmann algebra $i: V \hookrightarrow \Lambda^{*} V$ exists, then it is unique up to a (unique) isomorphism.
Proof. Similar to the respective proof for tensors.

Remark 21.3.

(1) If A is an associative algebra, then a two-sided ideal $I \subseteq A$ is a linear subalgebra such that for all $a, b \in A$ and all $x \in I$, both $a x \in I$ and $x b \in I$.
(2) If $I \subseteq A$ is an ideal, then A / I is an algebra and $\pi: A \rightarrow A / I, a \mapsto a+I$ is a map of algebras.
(3) For any subset $S \subseteq A$ there exists a smallest ideal $\langle S\rangle$ containing S. Concretely

$$
\langle S\rangle=\left\{\sum a_{i} s_{i} b_{i} \mid a_{i}, b_{i} \in A, s_{i} \in S\right\}
$$

Proposition 21.4 (6.21 in online notes). The exterior algebra $i: V \hookrightarrow \Lambda^{*} V$ exists.
Proof. Let $A=\mathcal{T}(V)=\mathbb{R} \oplus V \oplus V^{\otimes 2} \oplus \cdots$ and let $I=\langle\{v \otimes v \mid v \in V\}\rangle$, the two-sided ideal in $\mathcal{T}(V)$ generated by squares of vectors. Note that $I=\bigoplus_{n}\left(I \cap V^{\otimes n}\right)$. Moreover, $I \cap V^{\otimes 0}=0$ and $I \cap V^{\otimes 1}=0$ (by degree count: the squares $v \otimes v$ have degree 2 , so any element of I has degree 2 or bigger). Let $\Lambda^{*} V=\mathcal{T}(V) / I$. Then $\mathbb{R} \oplus V=V^{\otimes 0} \oplus V^{\otimes 1} \hookrightarrow \mathcal{T}(V) \xrightarrow{\pi} \Lambda^{*} V$ is injective. Also, $\Lambda^{*} V=\bigoplus_{n=0}^{\infty}$
$E x t[n] V$ with $\Lambda^{n} V \stackrel{\text { def }}{=} V^{\otimes n} /\left(I \cap V^{\otimes n}\right)$. Consequently $\Lambda^{0} V \simeq \mathbb{R}$ and $\Lambda^{1} V \simeq V$. So set $i: V \rightarrow \Lambda^{*} V$ to be the isomorphism $V \xrightarrow{\sim} \Lambda^{1} V$.
We need to check that the constructed map $i: V \hookrightarrow \Lambda^{*} V$ has the desired universal property. To this end suppose that we have a linear map $j: V \rightarrow A$, where A is some associative algebra, with $j(v) \cdot j(v)=0$ for all $v \in V$. Then for each $n \geq 1$ we have a map $V \times \cdots \times V \rightarrow A$, which is given by $\left(v_{1}, \ldots, v_{n}\right) \mapsto j\left(v_{1}\right) \cdots j\left(v_{n}\right)$. This map is n-linear. Therefore (for each n) we get a linear map $j^{(n)}: V^{\otimes n} \rightarrow A$ with $j^{(n)}\left(v_{1} \otimes \cdots \otimes v_{n}\right)=$ $j\left(v_{1}\right) \cdots j\left(v_{n}\right)$. Putting the maps $j^{(n)}$ together we get one map of algebras $\tilde{j}: \mathcal{T}(V) \rightarrow A$. Since $j(v) \cdot j(v)=\tilde{\sim}_{\tilde{j}}$ for all $v \in V^{\otimes 1}$ it follows that $j(v \otimes v)=0$ for all $v \in V^{\otimes 1}$. This implies that $\left.\tilde{j}\right|_{\langle\{v \otimes v \mid v \in V\}\rangle} \equiv 0$. Hence \tilde{j} descends to $\bar{j}: \Lambda^{*} V=\mathcal{T}(V) / I \rightarrow A$ with $\bar{j}(v)=j(v)$ for all $v \in \Lambda^{1} V$.

Notation. The product in $\Lambda^{*} V$ is denoted by \wedge. So $\pi\left(v_{1} \otimes \cdots \otimes v_{n}\right)=v_{1} \wedge \cdots \wedge v_{n}$. By construction $v \wedge v=0$ for all $v \in V$. Hence $w \wedge v=-v \wedge w$ for all $v, w \in V$.
Remark 21.5. If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V then $\left\{v_{i_{1}} \otimes \cdots \otimes v_{i_{k}}\right\}_{\left(i_{1} \cdots i_{k}\right) \in\{1, \ldots, n\}^{k}}$ is a basis of $V^{\otimes k}$. Then $\left\{v_{i_{1}} \wedge \cdots \wedge v_{i_{k}}\right\}_{\left(i_{1} \cdots i_{k}\right) \in\{1, \ldots, n\}^{k}}$ generates $\Lambda^{k} V$. Because \wedge is alternating we may assume $i_{1}<\cdots<i_{k}$ and the resulting smaller set $\left\{v_{i_{1}} \wedge \cdots \wedge v_{i_{k}}\right\}_{i_{1}<\cdots<i_{k}}$ still generates $\Lambda^{k} V$. Furthermore, if $k>n$ then some i_{j} 's in the indexing k-tuple must repeat. Consequently $\Lambda^{k} V=0$. By counting we can also see that $\operatorname{dim}_{R} \Lambda^{k} V \leq\binom{ n}{k}$. We would like to show that $\left\{v_{i_{1}} \wedge \cdots \wedge v_{i_{k}}\right\}_{i_{1}<\cdots<i_{k}}$ is a basis of $\Lambda^{k} V$ for $k \geq 1$. In particular $\Lambda^{n} V=\mathbb{R} v_{1} \wedge \cdots \wedge v_{n}$.
In preparation for the proof that $\left\{v_{i_{1}} \wedge \cdots \wedge v_{i_{k}}\right\}_{i_{1}<\cdots<i_{k}}$ is a basis note that we have k-linear and alternating maps

$$
\varphi^{(k)}: V \times \cdots \times V \rightarrow \Lambda^{*} V, \quad \varphi^{(k)}\left(v_{1}, \ldots, v_{k}\right)=v_{1} \wedge \cdots \wedge v_{k}
$$

Proposition 21.6 (6.25 and 6.25 .1 in online notes). For any vector spaces V, U and for any alternating k-linear map $f: V \times \cdots \times V \rightarrow U$ there exists a unique linear map $\bar{f}: \Lambda^{k} V \rightarrow U$ such that $\bar{f}\left(v_{1} \wedge \cdots \wedge v_{n}\right)=$ $f\left(v_{1}, \ldots, v_{n}\right)$ (i.e. $\left.f=\bar{f} \circ \varphi^{(k)}\right)$. Hence $\operatorname{Hom}\left(\Lambda^{k} V, U\right) \stackrel{\simeq}{\leftrightharpoons} \operatorname{Alt}^{k}(V, \ldots, V ; U), A \mapsto A \circ \varphi^{(k)}$ is an isomorphism.
Proof. Since f is k-linear there exists a unique map $\tilde{f}: V^{\otimes k} \rightarrow U$ such that $\tilde{f}\left(v_{1} \otimes \cdots \otimes v_{k}\right)=f\left(v_{1}, \ldots, v_{k}\right)$. Since f is alternating $\left.\tilde{f}\right|_{\left(I \cap V V^{\otimes k}\right)}=0$. Hence there exists a unique map $\bar{f}: V^{\otimes k} /\left(I \cap V^{\otimes k}\right)=\Lambda^{k} V \rightarrow U$ such that $\bar{f}\left(v_{1} \wedge \cdots \wedge v_{k}\right)=\tilde{f}\left(v_{1} \otimes \cdots \otimes v_{k}\right)=f\left(v_{1}, \ldots, v_{k}\right)$.
Lemma 21.7 (6.26 in online notes). $\Lambda^{\operatorname{dim} V} V \neq 0$ hence $\Lambda^{\operatorname{dim} V} V=1$.
Proof. Let $n=\operatorname{dim} V$. We may assume that $V=\mathbb{R}^{n}$. Then for det : $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ we have

$$
\operatorname{det}\left(\begin{array}{c|c|l|c|c}
1 & 0 & & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & & 1 & 0 \\
0 & 0 & & 0 & 1
\end{array}\right)=1
$$

and so $\operatorname{Alt}^{n}\left(\mathbb{R}^{n}, \ldots, \mathbb{R}^{n} ; \mathbb{R}\right) \neq 0$. Hence $\operatorname{Hom}\left(\Lambda^{n} V, \mathbb{R}\right) \neq 0$ and therefore $\Lambda^{n} V \neq 0$.
Corollary 21.8 (6.26.1 in online notes). If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V, then for any k with $1 \leq k \leq n$ the set $\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}_{i_{1}<\cdots<i_{k}}$ is a basis of $\Lambda^{k} V$.
Proof. Suppose that $\sum_{i_{1}<\cdots<i_{k}} a_{i_{1}, \ldots, i_{k}} v_{i_{1}} \wedge \cdots \wedge v_{i_{k}}=0$ for some $\left\{a_{i_{1}, \ldots, i_{k}}\right\}_{i_{1}<\cdots<i_{k}} \subseteq \mathbb{R}$. Fix $i_{1}^{0}<\cdots<i_{k}^{0}$. Let $j_{k+1}^{0}<\cdots<j_{n}^{0}$ be the complementary set of indices. Then

$$
v_{i_{1}} \wedge \cdots \wedge v_{i_{k}} \wedge v_{j_{k+1}}^{0} \wedge \cdots \wedge v_{j_{n}}^{0}= \begin{cases} \pm v_{1} \wedge \cdots \wedge v_{n} & \text { if }\left(i_{1}, \ldots, i_{k}\right)=\left(i_{1}^{0}, \ldots, i_{k}^{0}\right) \\ 0 & \text { else }\end{cases}
$$

Therefore

$$
0=\left(\sum_{i_{1}<\cdots<i_{k}} a_{i_{1}, \ldots, i_{k}} v_{i_{1}} \wedge \cdots \wedge v_{i_{k}}\right) \wedge v_{j_{k+1}}^{0} \wedge \cdots \wedge v_{j_{n}}^{0}= \pm a_{i_{1}, \ldots, i_{k}}
$$

