
Lecture 21 Differentiable Manifolds 10/10/2011

Last Time. We defined the Grassmann (exterior) algebra Λ∗V on a finite dimensional vector space V as
an (associative) algebra (with unit) with an injective linear map i : V ↪→ Λ∗V and the universal property
that for any associative algebra A and any linear map j : V → A such that j(v) ·j(w) = 0, there exists a
unique map of algebras j̄ : Λ∗V → A such that the following diagram commutes:

Λ∗V
j̄ // Λ∗W
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Remark 21.1. If A is an algebra, V ⊆ A a subspace, and for all v ∈ V v2 = 0, then for all v, w ∈ V :

0 = (v + w)2 = v ·v + v ·w + w·v + w·w = v ·w + w·v
and therefore w·v = −v ·w for all v, w ∈ V .

Proposition 21.2 (6.20 in online notes). If the Grassmann algebra i : V ↪→ Λ∗V exists, then it is unique
up to a (unique) isomorphism.

Proof. Similar to the respective proof for tensors. �

Remark 21.3.
(1) If A is an associative algebra, then a two-sided ideal I ⊆ A is a linear subalgebra such that for all

a, b ∈ A and all x ∈ I, both ax ∈ I and xb ∈ I.
(2) If I ⊆ A is an ideal, then A/I is an algebra and π : A→ A/I, a 7→ a+ I is a map of algebras.
(3) For any subset S ⊆ A there exists a smallest ideal 〈S〉 containing S. Concretely

〈S〉 =
{∑

ai si bi
∣∣ ai, bi ∈ A, si ∈ S}

Proposition 21.4 (6.21 in online notes). The exterior algebra i : V ↪→ Λ∗V exists.

Proof. Let A = T (V ) = R ⊕ V ⊕ V ⊗2 ⊕ · · · and let I =
〈{
v ⊗ v

∣∣ v ∈ V }〉, the two-sided ideal in T (V )
generated by squares of vectors. Note that I =

⊕
n(I ∩ V ⊗n). Moreover, I ∩ V ⊗0 = 0 and I ∩ V ⊗1 = 0 (by

degree count: the squares v⊗v have degree 2, so any element of I has degree 2 or bigger). Let Λ∗V = T (V )/I.
Then R⊕ V = V ⊗0 ⊕ V ⊗1 ↪→ T (V ) π−→ Λ∗V is injective. Also, Λ∗V=

⊕∞
n=0

Ext[n]V with ΛnV def= V ⊗n/(I ∩ V ⊗n). Consequently Λ0V ' R and Λ1V ' V . So set i : V → Λ∗V to be the
isomorphism V

∼−→ Λ1V .
We need to check that the constructed map i : V ↪→ Λ∗V has the desired universal property. To this end
suppose that we have a linear map j : V → A, where A is some associative algebra, with j(v)·j(v) = 0 for all
v ∈ V . Then for each n ≥ 1 we have a map V ×· · ·×V → A, which is given by (v1, . . . , vn) 7→ j(v1) · · · j(vn).
This map is n-linear. Therefore (for each n) we get a linear map j(n) : V ⊗n → A with j(n)(v1 ⊗ · · · ⊗ vn) =
j(v1) · · · j(vn). Putting the maps j(n) together we get one map of algebras j̃ : T (V )→ A. Since j(v)·j(v) = 0
for all v ∈ V ⊗1 it follows that j(v ⊗ v) = 0 for all v ∈ V ⊗1. This implies that j̃

∣∣
〈{v⊗v | v∈V }〉 ≡ 0. Hence j̃

descends to j̄ : Λ∗V = T (V )/I → A with j̄(v) = j(v) for all v ∈ Λ1V . �

Notation. The product in Λ∗V is denoted by ∧. So π(v1⊗· · ·⊗vn) = v1∧· · ·∧vn. By construction v∧v = 0
for all v ∈ V . Hence w ∧ v = −v ∧ w for all v, w ∈ V .

Remark 21.5. If {v1, . . . , vn} is a basis of V then {vi1 ⊗ · · · ⊗ vik}(i1···ik)∈{1,...,n}k is a basis of V ⊗k. Then
{vi1 ∧· · ·∧vik}(i1···ik)∈{1,...,n}k generates ΛkV . Because ∧ is alternating we may assume i1 < · · · < ik and the
resulting smaller set {vi1 ∧ · · · ∧ vik}i1<···<ik still generates ΛkV . Furthermore, if k > n then some ij ’s in the
indexing k-tuple must repeat. Consequently ΛkV = 0. By counting we can also see that dimR ΛkV ≤

(
n
k

)
. We

would like to show that {vi1∧· · ·∧vik}i1<···<ik is a basis of ΛkV for k ≥ 1. In particular ΛnV = R v1∧· · ·∧vn.

In preparation for the proof that {vi1 ∧· · ·∧vik}i1<···<ik is a basis note that we have k-linear and alternating
maps

ϕ(k) : V × · · · × V → Λ∗V, ϕ(k)(v1, . . . , vk) = v1 ∧ · · · ∧ vk.
1



Lecture 21 Differentiable Manifolds 10/10/2011

Proposition 21.6 (6.25 and 6.25.1 in online notes). For any vector spaces V,U and for any alternating
k-linear map f : V × · · · ×V → U there exists a unique linear map f̄ : ΛkV → U such that f̄(v1 ∧ · · · ∧ vn) =
f(v1, . . . , vn) (i.e. f = f̄ ◦ϕ(k)). Hence Hom(ΛkV,U) '−→ Altk(V, . . . , V ;U), A 7→ A◦ϕ(k) is an isomorphism.

Proof. Since f is k-linear there exists a unique map f̃ : V ⊗k → U such that f̃(v1⊗ · · · ⊗ vk) = f(v1, . . . , vk).
Since f is alternating f̃ |(I∩V ⊗k) = 0. Hence there exists a unique map f̄ : V ⊗k/(I ∩ V ⊗k) = ΛkV → U such
that f̄(v1 ∧ · · · ∧ vk) = f̃(v1 ⊗ · · · ⊗ vk) = f(v1, . . . , vk). �

Lemma 21.7 (6.26 in online notes). ΛdimV V 6= 0 hence ΛdimV V = 1.

Proof. Let n = dimV . We may assume that V = Rn. Then for det : Rn × Rn → R we have

det


1 0 0 0
0 1 0 0
...

... · · ·
...

...
0 0 1 0
0 0 0 1

 = 1

and so Altn(Rn, . . . ,Rn; R) 6= 0. Hence Hom(ΛnV,R) 6= 0 and therefore ΛnV 6= 0. �

Corollary 21.8 (6.26.1 in online notes). If {v1, . . . , vn} is a basis of V , then for any k with 1 ≤ k ≤ n the
set {vi1 , . . . , vik}i1<···<ik is a basis of ΛkV .

Proof. Suppose that
∑
i1<···<ik ai1,...,ikvi1 ∧ · · · ∧ vik = 0 for some {ai1,...,ik}i1<···<ik ⊆ R. Fix i01 < · · · < i0k.

Let j0
k+1 < · · · < j0

n be the complementary set of indices. Then

vi1 ∧ · · · ∧ vik ∧ v0
jk+1
∧ · · · ∧ v0

jn =

{
±v1 ∧ · · · ∧ vn if (i1, . . . , ik) = (i01, . . . , i

0
k)

0 else

Therefore

0 =

( ∑
i1<···<ik

ai1,...,ikvi1 ∧ · · · ∧ vik

)
∧ v0

jk+1
∧ · · · ∧ v0

jn = ±ai1,...,ik

�
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